翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

categorical quotient : ウィキペディア英語版
categorical quotient
In algebraic geometry, given a category ''C'', a categorical quotient of an object ''X'' with action of a group ''G'' is a morphism \pi: X \to Y that
:(i) is invariant; i.e., \pi \circ \sigma = \pi \circ p_2 where \sigma: G \times X \to X is the given group action and ''p''2 is the projection.
:(ii) satisfies the universal property: any morphism X \to Z satisfying (i) uniquely factors through \pi.
One of the main motivations for the development of geometric invariant theory was the construction of a categorical quotient for varieties or schemes.
Note \pi need not be surjective. Also, if it exists, a categorical quotient is unique up to a canonical isomorphism. In practice, one takes ''C'' to be the category of varieties or the category of schemes over a fixed scheme. A categorical quotient \pi is a universal categorical quotient if it is stable under base change: for any Y' \to Y, \pi': X' = X \times_Y Y' \to Y' is a categorical quotient.
A basic result is that geometric quotients (e.g., G/H) and GIT quotients (e.g., X/\!/G) are categorical quotients.
== References ==

* Mumford, David; Fogarty, J.; Kirwan, F. ''Geometric invariant theory''. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) (Results in Mathematics and Related Areas (2)), 34. Springer-Verlag, Berlin, 1994. xiv+292 pp. ISBN 3-540-56963-4

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「categorical quotient」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.